Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Practice	Mathematical Practices	
CCSS.Math.Practice.MP1	Make sense of problems and persevere in solving them.	

CCSS.Math.Practice.MP1 Make sense of problems and persevere in solving them.

Analyzing Solutions

Applications with the Volume of a Cone
Applications with the Volume of a Cylinder
Applying Linear Functions
Combining Like Terms to Solve Equations
Constructing Scatterplots
Drawing Trend Lines
Evaluating Expressions with Exponents
Exploring Association
Exploring Real Numbers
Exploring Systems of Linear Equations
Finding Distance in the Coordinate Plane
Finding the Hypotenuse in Right Triangles
Graphing in a Variety of Contexts
Graphing on the Coordinate Plane
Interpreting Clusters and Outliers
Modeling with Variables on Both Sides
Multiplying One Equation to Solve Systems
Parallel Lines Cut by a Transversal
Performance Task: Architectural Works and Wonders
Performance Task: Business Success
Problem Solving with Systems
Pythagorean Theorem in Three Dimensions
Rate of Change and Introduction to Slope
Rewriting Equations to Use Substitution
Slope-Intercept Form
Solving Equations with Rational Numbers
Solving Multistep Equations with Variables on Both Sides
Solving with the Distributive Property
Solving with Variables on Both Sides
Spherical and Cubic Volume Applications

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Practice.MP1	Make sense of problems and persevere in solving them.	
	(Cont'd)	Transversals
		Unknown Leg Lengths in Right Triangles
		Using Addition to Solve Systems
		Using Equations to Represent Trend Lines
		Using Substitution to Solve Systems
		Writing and Solving Systems
		Writing Linear Equations Given Two Points
		Writing Linear Functions
CCSS.Math.Practice.MP2	Reason abstractly and quantitatively.	
		Applications with the Volume of a Cone
		Applications with the Volume of a Cylinder
		Applying Linear Functions
		Combining Like Terms to Solve Equations
		Congruence and Transformations
		Estimating and Comparing Square Roots
		Evaluating Expressions with Exponents
		Exploring Real Numbers
		Exploring Slope
		Exploring Systems of Linear Equations
		Finding Distance in the Coordinate Plane
		Finding the Hypotenuse in Right Triangles
		Graphing in a Variety of Contexts
		Interpreting Graphs
		Interpreting Two-Way Tables
		Introduction to Functions
		Introduction to Scientific Notation
		Linear vs. Nonlinear Functions
		Making Predictions
		Making Two-Way Tables
		Operations with Scientific Notation
		Performance Task: Architectural Works and Wonders
		Performance Task: Business Success
		Powers and Exponents

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Practice.MP2	Reason abstractly and quantitatively.	
	(Cont'd)	Powers with the Same Base
		Problem Solving with Systems
		Pythagorean Theorem in Three Dimensions
		Raising a Power to a Power
		Rewriting Equations to Use Substitution
		Similarity and Transformations
		Slope-Intercept Form
		Solving Equations with Rational Numbers
		Solving with the Distributive Property
		Spherical and Cubic Volume Applications
		Unknown Leg Lengths in Right Triangles
		Using Equations to Represent Trend Lines
		Writing and Solving Systems
		Zero and Negative Exponents
CCSS.Math.Practice.MP3	Construct viable arguments and critique the reasoning of others.	
		Analyzing Solutions
		Comparing Slopes and Intercepts
		Converse to the Pythagorean Theorem
		Estimating Solutions of Systems
		Evaluating Expressions with Exponents
		Exploring Association
		Exploring the Pythagorean Theorem
		Exterior Angles of a Triangle
		Graphing in a Variety of Contexts
		Graphing on the Coordinate Plane
		Interpreting Clusters and Outliers
		Interpreting Two-Way Tables
		Introduction to Functions
		Introduction to Scientific Notation
		Linear vs. Nonlinear Functions
		Parallel Lines Cut by a Transversal
		Proportional Relationships
		Rate of Change and Introduction to Slope
		Similar Triangles

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Practice.MP3	Construct viable arguments and critique the reasoning of others.	
	(Cont'd)	Slope-Intercept Form
		Sum of Interior Angles of a Triangle
		Tables, Graphs, and Equations
		Transversals
		Using Graphs to Solve Systems
		Using Substitution to Solve Systems
		Writing and Solving Systems
		Writing Linear Equations Given Two Points
CCSS.Math.Practice.MP4	Model with mathematics.	
		Applying Linear Functions
		Congruence and Transformations
		Constructing Scatterplots
		Converse to the Pythagorean Theorem
		Dilations
		Drawing Trend Lines
		Exploring Association
		Exploring the Pythagorean Theorem
		Finding Distance in the Coordinate Plane
		Finding the Hypotenuse in Right Triangles
		Graphing on the Coordinate Plane
		Interpreting Clusters and Outliers
		Interpreting Two-Way Tables
		Introduction to Functions
		Introduction to the Volume of a Cone
		Introduction to the Volume of a Cylinder
		Introduction to the Volume of a Sphere
		Making Predictions
		Making Two-Way Tables
		Multiplying One Equation to Solve Systems
		Performance Task: Architectural Works and
		Wonders
		Performance Task: Business Success
		Performance Task: Sign Production
		Problem Solving with Systems

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Practice.MP4	Model with mathematics.	
	(Cont'd)	Proportional Relationships
		Pythagorean Theorem in Three Dimensions
		Rewriting Equations to Use Substitution
		Rotations in the Coordinate Plane
		Similar Triangles and Slope
		Slope-Intercept Form
		Solving Equations with Rational Numbers
		Solving with the Distributive Property
		Tables, Graphs, and Equations
		Unknown Leg Lengths in Right Triangles
		Using Addition to Solve Systems
		Using Equations to Represent Trend Lines
		Using Graphs to Solve Systems
		Writing and Solving Systems
CCSS.Math.Practice.MP5	Use appropriate tools strategically.	
		Applications with the Volume of a Cone
		Applications with the Volume of a Cylinder
		Combining Like Terms to Solve Equations
		Comparing Slopes and Intercepts
		Congruence
		Constructing Linear Functions
		Dilations in the Coordinate Plane
		Drawing Trend Lines
		Estimating and Comparing Square Roots
		Estimating Solutions of Systems
		Exploring Slope
		Graphing in a Variety of Contexts
		Graphing on the Coordinate Plane
		Interpreting Graphs
		Making Predictions
		Modeling with Variables on Both Sides
		Operations with Scientific Notation
		Overview of Transformations

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Practice.MP5	Use appropriate tools strategically.	
	(Cont'd)	Performance Task: Architectural Works and
		Wonders
		Proportional Relationships
		Rate of Change and Introduction to Slope
		Reflections
		Rotations
		Similarity and Transformations
		Spherical and Cubic Volume Applications
		Sum of Interior Angles of a Triangle
		Tables, Graphs, and Equations
		Translations
		Using Graphs to Determine the Number of
		Solutions
CCSS.Math.Practice.MP6	Attend to precision.	
		Analyzing Solutions
		Combining Like Terms to Solve Equations
		Congruence
		Congruence and Transformations
		Constructing Linear Functions
		Constructing Scatterplots
		Converse to the Pythagorean Theorem
		Dilations
		Dilations in the Coordinate Plane
		Evaluating Expressions with Exponents
		Exploring Real Numbers
		Exploring the Pythagorean Theorem
		Exterior Angles of a Triangle
		Finding Distance in the Coordinate Plane
		Interpreting Graphs
		Introduction to Scientific Notation
		Introduction to the Volume of a Cone
		Introduction to the Volume of a Cylinder
		Introduction to the Volume of a Sphere
		Modeling with Variables on Both Sides

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Practice.MP6	Attend to precision.	
	(Cont'd)	Operations with Scientific Notation
		Overview of Transformations
		Parallel Lines Cut by a Transversal
		Performance Task: Architectural Works and
		Wonders
		Performance Task: Sign Production
		Powers and Exponents
		Powers with the Same Base
		Pythagorean Theorem in Three Dimensions
		Raising a Power to a Power
		Reflections
		Rotations
		Rotations in the Coordinate Plane
		Similar Triangles
		Similarity and Transformations
		Solving Equations with Rational Numbers
		Solving Multistep Equations with Variables on Both Sides
		Solving with the Distributive Property
		Solving with Variables on Both Sides
		Sum of Interior Angles of a Triangle
		Translations
		Using Addition to Solve Systems
		Using Graphs to Determine the Number of Solutions
		Writing Linear Equations Given Two Points
		Zero and Negative Exponents
CCSS.Math.Practice.MP7	Look for and make use of structure.	
		Applications with the Volume of a Cone
		Applications with the Volume of a Cylinder
		Comparing Slopes and Intercepts
		Congruence
		Congruence and Transformations
		Converse to the Pythagorean Theorem

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Practice.MP7	Look for and make use of structure.	
	(Cont'd)	Drawing Trend Lines
		Estimating and Comparing Square Roots
		Estimating Solutions of Systems
		Evaluating Expressions with Exponents
		Exploring Association
		Exploring Real Numbers
		Exploring Slope
		Exploring Systems of Linear Equations
		Exploring the Pythagorean Theorem
		Exterior Angles of a Triangle
		Finding Distance in the Coordinate Plane
		Finding the Hypotenuse in Right Triangles
		Graphing in a Variety of Contexts
		Interpreting Clusters and Outliers
		Interpreting Two-Way Tables
		Introduction to Scientific Notation
		Linear vs. Nonlinear Functions
		Making Two-Way Tables
		Multiplying One Equation to Solve Systems
		Operations with Scientific Notation
		Overview of Transformations
		Parallel Lines Cut by a Transversal
		Performance Task: Business Success
		Performance Task: Sign Production
		Powers and Exponents
		Powers with the Same Base
		Problem Solving with Systems
		Proportional Relationships
		Pythagorean Theorem in Three Dimensions
		Raising a Power to a Power
		Reflections
		Rewriting Equations to Use Substitution
		Rotations
		Similar Triangles

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Practice.MP7	Look for and make use of structure.	
	(Cont'd)	Similar Triangles and Slope
		Similarity and Transformations
		Slope-Intercept Form
		Solving Multistep Equations with Variables on Both Sides
		Solving with the Distributive Property
		Solving with Variables on Both Sides
		Spherical and Cubic Volume Applications
		Sum of Interior Angles of a Triangle
		Tables, Graphs, and Equations
		Translations
		Transversals
		Unknown Leg Lengths in Right Triangles
		Using Addition to Solve Systems
		Using Equations to Represent Trend Lines
		Using Graphs to Determine the Number of
		Solutions
		Using Graphs to Solve Systems
		Using Substitution to Solve Systems
		Writing and Solving Systems
		Zero and Negative Exponents
CCSS.Math.Practice.MP8	Look for and express regularity in repeated reasoning.	
		Applications with the Volume of a Cylinder
		Congruence
		Constructing Linear Functions
		Dilations
		Dilations in the Coordinate Plane
		Estimating and Comparing Square Roots
		Exploring Real Numbers
		Exploring Slope
		Performance Task: Sign Production
		Proportional Relationships
		Rate of Change and Introduction to Slope
		Reflections

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Practice.MP8	Look for and express regularity in repeated reasoning. (Cont'd)	Rotations Similar Triangles and Slope Similarity and Transformations Translations Writing Linear Equations Given Two Points Writing Linear Functions Zero and Negative Exponents
CCSS.Math.Content.8.NS CCSS.Math.Content.8.NS.A	The Number System Know that there are numbers that are not rational, and approximate them by rational numbers.	
CCSS.Math.Content.8.NS.A. 1	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.	Exploring Real Numbers Performance Task: Architectural Works and Wonders
CCSS.Math.Content.8.NS.A. 2	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations.	Estimating and Comparing Square Roots
CCSS.Math.Content.8.EE	Expressions and Equations	
CCSS.Math.Content.8.EE.A	Work with radicals and integer exponents.	
CCSS.Math.Content.8.EE.A. 1	Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=1 / 3^{3}=1 / 27$.	Evaluating Expressions with Exponents Powers and Exponents Powers with the Same Base Raising a Power to a Power Zero and Negative Exponents

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Content.8.EE.A. 2	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.	
		Applications with the Volume of a Cone
		Converse to the Pythagorean Theorem
		Exploring the Pythagorean Theorem
		Finding Distance in the Coordinate Plane
		Finding the Hypotenuse in Right Triangles
		Performance Task: Architectural Works and Wonders
		Pythagorean Theorem in Three Dimensions
		Spherical and Cubic Volume Applications
		Unknown Leg Lengths in Right Triangles
CCSS.Math.Content.8.EE.A. 3	Use numbers expressed in the form of a single digit times a whole-number power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 times 10^{8} and the population of the world as 7 times 10^{9}, and determine that the world population is more than 20 times larger.	
		Introduction to Scientific Notation
		Operations with Scientific Notation
CCSS.Math.Content.8.EE.A. 4	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.	
		Introduction to Scientific Notation
		Operations with Scientific Notation
CCSS.Math.Content.8.EE.B	Understand the connections between proportional relationships, lines, and linear equations.	
CCSS.Math.Content.8.EE.B. 5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	

Performance Task: Business Success
Proportional Relationships
Rate of Change and Introduction to Slope

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Content.8.EE.B. 6	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.	Performance Task: Sign Production Proportional Relationships Rate of Change and Introduction to Slope Similar Triangles and Slope Slope-Intercept Form
CCSS.Math.Content.8.EE.C CCSS.Math.Content.8.EE.C. 7	Analyze and solve linear equations and pairs of simultaneous linear equations. Solve linear equations in one variable.	
CCSS.Math.Content.8.EE.C.7a	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).	Analyzing Solutions
CCSS.Math.Content.8.EE.C.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.	Combining Like Terms to Solve Equations Modeling with Variables on Both Sides Solving Equations with Rational Numbers Solving Multistep Equations with Variables on Both Sides Solving with the Distributive Property Solving with Variables on Both Sides
CCSS.Math.Content.8.EE.C. 8	Analyze and solve pairs of simultaneous linear equations.	
CCSS.Math.Content.8.EE.C.8a	Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.	
		Estimating Solutions of Systems
		Exploring Systems of Linear Equations
		Using Graphs to Determine the Number of Solutions

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Content.8.EE.C.8b	Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+$ $2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .	Estimating Solutions of Systems Exploring Systems of Linear Equations Multiplying One Equation to Solve Systems Rewriting Equations to Use Substitution Using Addition to Solve Systems Using Graphs to Determine the Number of Solutions Using Graphs to Solve Systems Using Substitution to Solve Systems
CCSS.Math.Content.8.EE.C.8c	Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.	Estimating Solutions of Systems Exploring Systems of Linear Equations Problem Solving with Systems Rewriting Equations to Use Substitution Using Graphs to Determine the Number of Solutions Using Graphs to Solve Systems Writing and Solving Systems
CCSS.Math.Content.8.F CCSS.Math.Content.8.F.A	Functions Define, evaluate, and compare functions.	
CCSS.Math.Content.8.F.A. 1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.	Introduction to Functions Slope-Intercept Form
CCSS.Math.Content.8.F.A. 2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	Comparing Slopes and Intercepts Constructing Linear Functions Graphing on the Coordinate Plane
© Edgenuity, Inc.	Confidential	Page

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Content.8.F.A. 3	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.	Applying Linear Functions Linear vs. Nonlinear Functions Slope-Intercept Form Writing Linear Equations Given Two Points
CCSS.Math.Content.8.F.B	Use functions to model relationships between quantities.	
CCSS.Math.Content.8.F.B. 4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	Applying Linear Functions Constructing Linear Functions Exploring Slope Graphing in a Variety of Contexts Proportional Relationships Rate of Change and Introduction to Slope Slope-Intercept Form Tables, Graphs, and Equations Writing and Solving Systems Writing Linear Equations Given Two Points Writing Linear Functions
CCSS.Math.Content.8.F.B. 5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	Interpreting Graphs Linear vs. Nonlinear Functions

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Content.8.G	Geometry	
CCSS.Math.Content.8.G.A	Understand congruence and similarity using physical models, transparencies, or geometry software.	
CCSS.Math.Content.8.G.A. 1	Verify experimentally the properties of rotations, reflections, and translations:	
CCSS.Math.Content.8.G.A.1a	Lines are taken to lines, and line segments to line segments of the same length.	
		Congruence
		Congruence and Transformations
		Overview of Transformations
CCSS.Math.Content.8.G.A.1b	Angles are taken to angles of the same measure.	
		Congruence
		Congruence and Transformations
		Overview of Transformations
CCSS.Math.Content.8.G.A.1c	Parallel lines are taken to parallel lines.	
		Congruence
		Congruence and Transformations
		Overview of Transformations
CCSS.Math.Content.8.G.A. 2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	
		Congruence and Transformations
CCSS.Math.Content.8.G.A. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	
		Dilations
		Dilations in the Coordinate Plane
		Reflections
		Rotations
		Rotations in the Coordinate Plane
		Translations
CCSS.Math.Content.8.G.A. 4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	
		Similarity and Transformations

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Content.8.G.A. 5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	
		Exterior Angles of a Triangle
		Parallel Lines Cut by a Transversal
		Performance Task: Sign Production
		Similar Triangles
		Similar Triangles and Slope
		Sum of Interior Angles of a Triangle
		Transversals
CCSS.Math.Content.8.G.B	Understand and apply the Pythagorean Theorem.	
CCSS.Math.Content.8.G.B. 6	Explain a proof of the Pythagorean Theorem and its converse.	
		Converse to the Pythagorean Theorem
		Exploring the Pythagorean Theorem
CCSS.Math.Content.8.G.B. 7	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions.	
		Finding the Hypotenuse in Right Triangles
		Performance Task: Architectural Works and
		Wonders
		Pythagorean Theorem in Three Dimensions
		Unknown Leg Lengths in Right Triangles
CCSS.Math.Content.8.G.B. 8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	
		Finding Distance in the Coordinate Plane
CCSS.Math.Content.8.G.C	Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.	
CCSS.Math.Content.8.G.C. 9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.	
		Applications with the Volume of a Cone
		Applications with the Volume of a Cylinder
		Introduction to the Volume of a Cone
		Introduction to the Volume of a Cylinder
		Introduction to the Volume of a Sphere
		Spherical and Cubic Volume Applications

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.Content.8.SP	Statistics and Probability	
CCSS.Math.Content.8.SP.A	Investigate patterns of association in bivariate data.	
CCSS.Math.Content.8.SP.A. 1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	
		Constructing Scatterplots
		Exploring Association
		Interpreting Clusters and Outliers
		Performance Task: Business Success
CCSS.Math.Content.8.SP.A. 2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	
		Drawing Trend Lines
		Performance Task: Business Success
		Using Equations to Represent Trend Lines
CCSS.Math.Content.8.SP.A. 3	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.	
		Making Predictions
		Performance Task: Business Success
		Using Equations to Represent Trend Lines
CCSS.Math.Content.8.SP.A. 4	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?	
		Interpreting Two-Way Tables
		Making Two-Way Tables

