Standard ID	Standard Text	\|Edgenuity Lesson Name
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { RN } \end{aligned}$	The Real Number System	
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { RN.A } \end{aligned}$	Extend the properties of exponents to rational exponents.	
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { RN.A. } 1 \end{aligned}$	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{\wedge} 1 / 3$ to be the cube root of 5 because we want $\left(5^{\wedge} 1 / 3\right)^{\wedge} 3=5^{\wedge}(1 / 3)^{\wedge} 3$ to hold, so $\left(5^{\wedge} 1 / 3\right)^{\wedge} 3$ must equal 5.	Exponential Functions with Radical Bases
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { RN.A. } 2 \end{aligned}$	Rewrite expressions involving radicals and rational exponents using the properties of exponents.	Exponential Functions with Radical Bases
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { RN.B } \end{aligned}$	Use properties of rational and irrational numbers.	
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { RN.B. } 3 \end{aligned}$	Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	Solving Quadratic Equations: Completing the Square
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { CN } \end{aligned}$	The Complex Number System	
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { CN.A } \end{aligned}$	Perform arithmetic operations with complex numbers.	
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { CN.A. } 1 \end{aligned}$	Know there is a complex number i such that $\mathrm{i}^{\wedge} 2=-1$, and every complex number has the form $\mathrm{a}+\mathrm{bi}$ with a and b real.	Complex Numbers
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { CN.A. } 2 \end{aligned}$	Use the relation $i^{\wedge} 2=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	Operations with Complex Numbers
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { CN.C } \end{aligned}$	Use complex numbers in polynomial identities and equations.	
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { CN.C. } 7 \end{aligned}$	Solve quadratic equations with real coefficients that have complex solutions.	Completing the Square The Quadratic Formula
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { CN.C. } 8 \end{aligned}$	(+) Extend polynomial identities to the complex numbers. For example, rewrite $x^{\wedge} 2+4$ as $(x+2 i)(x-$ 2i).	The Fundamental Theorem of Algebra

Standard ID	Standard Text	Edgenuity Lesson Name
$\begin{aligned} & \text { CCSS.HSN- } \\ & \text { CN.C. } 9 \end{aligned}$	(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.	Completing the Square The Quadratic Formula The Fundamental Theorem of Algebra Writing Polynomial Functions from Complex Roots
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { SSE } \end{aligned}$	Seeing Structure in Expressions	
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { SSE.A } \end{aligned}$	Interpret the structure of expressions.	
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { SSE.A. } 1 \end{aligned}$	Interpret expressions that represent a quantity in terms of its context.	
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { SSE.A.1a } \end{aligned}$	Interpret parts of an expression, such as terms, factors, and coefficients.	Multiplying Polynomials and Simplifying Expressions
$\begin{aligned} & \hline \text { CCSS.HSA- } \\ & \text { SSE.A.1b } \end{aligned}$	Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{\wedge} n$ as the product of P and a factor not depending on P.	Factoring Polynomials: GCF
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { SSE.A. } 2 \end{aligned}$	Use the structure of an expression to identify ways to rewrite it. For example, see $x^{\wedge} 4-y^{\wedge} 4$ as $\left(x^{\wedge} 2\right)^{\wedge} 2$ $-\left(y^{\wedge} 2\right)^{\wedge} 2$, thus recognizing it as a difference of squares that can be factored as $\left(x^{\wedge} 2-y^{\wedge} 2\right)\left(x^{\wedge} 2+y^{\wedge} 2\right)$.	Factoring Polynomials: GCF Factoring Polynomials: Double Grouping Factoring Trinomials: $\mathrm{a}=1$ Factoring Trinomials: $\mathrm{a}>1$
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { SSE.B } \end{aligned}$	Write expressions in equivalent forms to solve problems.	
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { SSE.B. } 3 \end{aligned}$	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { SSE.B.3a } \end{aligned}$	Factor a quadratic expression to reveal the zeros of the function it defines.	Quadratic Functions: Standard Form
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { SSE.B.3b } \end{aligned}$	Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.	Completing the Square (Continued)
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { SSE.B.3c } \end{aligned}$	Use the properties of exponents to transform expressions for exponential functions. For example the expression $1.15^{\wedge} t$ can be rewritten as $\left(1.15^{\wedge}(1 / 12)\right)^{\wedge} 12 t \mathrm{a} \%{ }^{\wedge} 1.012^{\wedge} 12 \mathrm{t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.	Exponential Functions with Radical Bases

| Standard ID | Standard Text | Edgenuity Lesson Name |
| :--- | :--- | :--- | :--- |
| CCSS.HSA- | Arithmetic with Polynomials and Rational Functions | |
| APR | | |
| CCSS.HSA- | Perform arithmetic operations on polynomials. | |
| APR.A | | |
| CCSS.HSA- | Understand that polynomials form a system analogous to the integers, namely, they are closed under | Adding and Subtracting Polynomials |
| APR.A.1 | the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. | Multiplying Monomials and Binomials
 Multiplying Polynomials and Simplifying |
| CCSS.HSA- | Creating Equations | Expressions |

Standard ID	Standard Text	Edgenuity Lesson Name
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { REI.B.4b } \end{aligned}$	Solve quadratic equations by inspection (e.g., for $x^{\wedge} 2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a plus-minus bi for real numbers a and b.	Solving Quadratic Equations: Zero Product Property Solving Quadratic Equations: Factoring Solving Quadratic Equations: Completing the Square Solving Quadratic Equations: Completing the Square (Continued) Introduction to the Quadratic Formula Solving Quadratic Equations: Quadratic Formula
$\begin{aligned} & \text { CCSS.HSA- } \\ & \text { REI.C } \\ & \hline \text { CCSS.HSA- } \\ & \text { REI.C. } 7 \end{aligned}$	Solve systems of equations. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{\wedge} 2+y^{\wedge} 2=3$.	
CCSS.HSF-IF	Interpreting Functions	
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { IF.B } \end{aligned}$	Interpret functions that arise in applications in terms of the context.	
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { IF.B. } 4 \end{aligned}$	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.	Introduction to Quadratic Functions Quadratic Functions: Factored Form Quadratic Functions: Vertex Form Completing the Square (Continued)
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { IF.B. } 5 \end{aligned}$	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.	Quadratic Functions: Standard Form Quadratic Functions: Factored Form
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { IF.B. } 6 \end{aligned}$	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	Introduction to Quadratic Functions

Standard ID	Standard Text	Edgenuity Lesson Name
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { IF.C } \end{aligned}$	Analyze functions using different representations.	
CCSS.HSF- IF.C. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { IF.C.7a } \end{aligned}$	Graph linear and quadratic functions and show intercepts, maxima, and minima.	Introduction to Quadratic Functions Quadratic Functions: Standard Form Quadratic Functions: Factored Form Quadratic Functions: Vertex Form Completing the Square (Continued)
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { IF.C.7b } \end{aligned}$	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	Linear Piecewise Defined Functions Step Functions Absolute Value Functions and Translations The Square Root Function
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { IF.C. } 8 \end{aligned}$	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { IF.C.8a } \end{aligned}$	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	Completing the Square (Continued)
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { IF.C. } 8 \mathrm{~b} \end{aligned}$	Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02)^{\wedge} t, y=(0.97)^{\wedge} t, y=(1.01)^{\wedge} 12 t, y=$ $(1.2)^{\wedge} \mathrm{t} / 10$, and classify them as representing exponential growth or decay.	Rewriting Exponential Functions
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { IF.C. } 9 \end{aligned}$	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	Quadratic Functions: Factored Form

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.HSF-BF	Building Functions	
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { BF.A } \end{aligned}$	Build a function that models a relationship between two quantities.	
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { BF.A. } 1 \end{aligned}$	Write a function that describes a relationship between two quantities.	
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { BF.A.1a } \end{aligned}$	Determine an explicit expression, a recursive process, or steps for calculation from a context.	Completing the Square (Continued)
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { BF.A.1b } \end{aligned}$	Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.	Translations of Exponential Functions
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { BF.B } \end{aligned}$	Build new functions from existing functions.	
$\begin{aligned} & \text { CCSS.HSF- } \\ & \text { BF.B. } 3 \end{aligned}$	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	Quadratic Functions: Vertex Form

CCSS.HSF-	Find inverse functions.
BF.B. 4	
CCSS.HSF-	Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an
BF.B.4a	expression for the inverse. For example, $f(x)=2 x^{\wedge} 3$ for $x>0$ or $f(x)=(x+1) /(x-1)$ for x â\% 1.

[^0]| Standard ID | Standard Text | Edgenuity Lesson Name |
| :---: | :---: | :---: |
| CCSS.HSF-TF | Trigonometric Functions | |
| $\begin{aligned} & \text { CCSS.HSF- } \\ & \text { TF.C } \end{aligned}$ | Prove and apply trigonometric identities. | |
| $\begin{aligned} & \text { CCSS.HSF- } \\ & \text { TF.C. } 8 \end{aligned}$ | Prove the Pythagorean identity $\sin ^{\wedge} 2\left(\hat{I}_{3}\right)+\cos ^{\wedge} 2\left(\hat{I}_{3}\right)=1$ and use it to find $\sin \left(\hat{I}_{3}\right), \cos \left(\hat{I}_{3}\right)$, or $\tan \left(\hat{I}_{3}\right)$ given $\sin \left(\hat{I}_{3}\right), \cos \left(\hat{I}_{\Omega}\right), \operatorname{or} \tan \left(\hat{I}_{3}\right)$ and the quadrant of the angle. | Evaluating the Six Trigonometric Functions |
| $\begin{aligned} & \text { CCSS.HSG- } \\ & \text { CO } \end{aligned}$ | Congruence | |
| $\begin{aligned} & \text { CCSS.HSG- } \\ & \text { CO.C } \end{aligned}$ | Prove geometric theorems | |
| $\begin{aligned} & \hline \text { CCSS.HSG- } \\ & \text { CO.C. } 9 \end{aligned}$ | Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints. | Parallel and Perpendicular Lines Lines Cut by a Transversal Proving Lines Parallel |
| $\begin{aligned} & \hline \text { CCSS.HSG- } \\ & \text { CO.C. } 10 \end{aligned}$ | Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to $180 \hat{A}^{\circ}$; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. | Triangle Angle Theorems Triangles and Their Side Lengths Isosceles Triangles |
| $\begin{aligned} & \hline \text { CCSS.HSG- } \\ & \text { CO.C. } 11 \end{aligned}$ | Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other and conversely, rectangle are parallelograms with congruent diagonals. | Classifying Quadrilaterals
 Parallelograms
 Proving a Quadrilateral Is a Parallelogram |
| $\begin{aligned} & \text { CCSS.HSG- } \\ & \text { SRT } \end{aligned}$ | Similarity, Right Triangles, and Trigonometry | |
| $\begin{aligned} & \text { CCSS.HSG- } \\ & \text { SRT.A } \end{aligned}$ | Understand similarity in terms of similarity transformations | |
| $\begin{aligned} & \text { CCSS.HSG- } \\ & \text { SRT.A. } 1 \end{aligned}$ | Verify experimentally the properties of dilations given by a center and a scale factor: | |
| $\begin{aligned} & \hline \text { CCSS.HSG- } \\ & \text { SRT.A.1a } \end{aligned}$ | A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. | Dilations
 Similar Figures |
| $\begin{aligned} & \hline \text { CCSS.HSG- } \\ & \text { SRT.A.1b } \end{aligned}$ | The dilation of a line segment is longer or shorter in the ratio given by the scale factor. | Dilations
 Similar Figures |

| Standard ID | Standard Text | | Edgenuity Lesson Name |
| :--- | :--- | :--- | :--- | :--- |
| CCSS.HSG- | Given two figures, use the definition of similarity in terms of similarity transformations to decide if
 they are similar; explain using similarity transformations the meaning of similarity for triangles as the
 equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of
 sides. | Similar Figures
 Triangle Similarity: AA | |
| CCSS.HSG- | Use the properties of similarity transformations to establish the AA criterion for two triangles to be
 similar. | Triangle Similarity: AA | |
| SRT.A.3 | | | |

Standard ID	Standard Text	Edgenuity Lesson Name
$\begin{aligned} & \text { CCSS.HSG- } \\ & \text { GPE.B } \end{aligned}$	Use coordinates to prove simple geometric theorems algebraically	
CCSS.HSG- GPE.B. 4	Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $\left(1, \hat{a}^{\wedge} \mathrm{s} 3\right)$ lies on the circle centered at the origin and containing the point $(0,2)$.	Equation of a Circle
CCSS.HSG- GPE.B. 6	Find the point on a directed line segment between two given points that divide the segment in a given ratio.	Directed Line Segments and Modeling
CCSS.HSG- GMD	Geometric Measurement and Dimension	
$\begin{aligned} & \text { CCSS.HSG- } \\ & \text { GMD.A } \end{aligned}$	Explain volume formulas and use them to solve problems	
$\begin{aligned} & \text { CCSS.HSG- } \\ & \text { GMD.A. } 1 \end{aligned}$	Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.	Circumference and Arc Length Area of a Circle and a Sector Volume of Pyramids Volume of Cylinders, Cones, and Spheres
$\begin{aligned} & \text { CCSS.HSG- } \\ & \text { GMD.A. } 3 \end{aligned}$	Use volume formulas for cylinders, pyramids, cones and spheres to solve problems.	Volume of Pyramids Volume of Cylinders, Cones, and Spheres
CCSS.HSS-CP	Conditional Probability and the Rules of Probability	
$\begin{aligned} & \text { CCSS.HSS- } \\ & \text { CP.A } \end{aligned}$	Understand independence and conditional probability and use them to interpret data	
$\begin{aligned} & \text { CCSS.HSS- } \\ & \text { CP.A. } 1 \end{aligned}$	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	Sets and Venn Diagrams Finding Outcomes Theoretical and Experimental Probability
$\begin{aligned} & \text { CCSS.HSS- } \\ & \text { CP.A. } 2 \end{aligned}$	Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	Independent and Mutually Exclusive Events
$\begin{aligned} & \text { CCSS.HSS- } \\ & \text { CP.A. } 3 \end{aligned}$	Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	Conditional Probability

Standard ID	Standard Text	Edgenuity Lesson Name

CCSS.HSS- Construct and interpret two-way frequency tables of data when two categories are associated with

Edgenuity Lesson Name
Probability and Two-Way Tables

CP.A. 4 each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English.
Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.

CCSS.HSS-	Recognize and explain the concepts of conditional probability and independence in everyday	Conditional Probability
CP.A.5	language and everyday situations. For example, compare the chance of having lung cancer if you are a Probability and Two-Way Tables smoker with the chance of being a smoker if you have lung cancer.	

$\begin{aligned} & \text { CCSS.HSS- } \\ & \text { CP.B } \end{aligned}$	Use the rules of probability to compute probabilities of compound events in a uniform probability model	
$\begin{aligned} & \text { CCSS.HSS- } \\ & \text { CP.B. } 6 \end{aligned}$	Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A and interpret the answer in terms of the model.	Conditional Probability Probability and Two-Way Tables
CCSS.HSS- CP.B. 7	Apply the Addition Rule, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$, and interpret the answer in terms of the model.	Independent and Mutually Exclusive Events
$\begin{aligned} & \hline \text { CCSS.HSS- } \\ & \text { CP.B. } 8 \end{aligned}$	$(+)$ Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=P(A) P(B \mid A)=$ $P(B) P(A \mid B)$, and interpret the answer in terms of the model.	Conditional Probability
$\begin{aligned} & \text { CCSS.HSS- } \\ & \text { CP.B. } 9 \end{aligned}$	(+) Use permutations and combinations to compute probabilities of compound events and solve problems.	Probability with Combinations and Permutations
$\begin{aligned} & \text { CCSS.HSS- } \\ & \text { MD } \end{aligned}$	Using Probability to Make Decisions	
$\begin{aligned} & \text { CCSS.HSS- } \\ & \text { MD.B } \end{aligned}$	Use probability to evaluate outcomes of decisions	
$\begin{aligned} & \hline \text { CCSS.HSS- } \\ & \text { MD.B. } 6 \end{aligned}$	(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).	
$\begin{aligned} & \hline \text { CCSS.HSS- } \\ & \text { MD.B. } 7 \end{aligned}$	(+) Analyze decisions and strategies using probability concepts (e.g. product testing, medical testing, pulling a hockey goalie at the end of a game).	

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.HSG-C	Circles	
$\begin{aligned} & \text { CCSS.HSG- } \\ & \text { C.A } \end{aligned}$	Understand and apply theorems about circles	
$\begin{aligned} & \text { CCSS.HSG- } \\ & \text { C.A. } 1 \end{aligned}$	Prove that all circles are similar.	Introduction to Circles
$\begin{aligned} & \hline \text { CCSS.HSG- } \\ & \text { C.A. } 2 \end{aligned}$	Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.	Central Angles Inscribed Angles Secants, Tangents, and Angles Angle Relationships
$\begin{aligned} & \text { CCSS.HSG- } \\ & \text { C.A. } 3 \end{aligned}$	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.	Inscribed Angles
$\begin{aligned} & \text { CCSS.HSG- } \\ & \text { C.A. } 4 \end{aligned}$	(+) Construct a tangent line from a point outside a given circle to the circle.	
$\begin{aligned} & \text { CCSS.HSG- } \\ & \text { C.B } \end{aligned}$	Find arc lengths and areas of sectors of circles	
$\begin{aligned} & \text { CCSS.HSG- } \\ & \text { C.B. } 5 \end{aligned}$	Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.	Circumference and Arc Length Area of a Circle and a Sector

[^0]: CCSS.HSF-LE Linear, Quadratic, and Exponential Models

 CCSS.HSF- Construct and compare linear and exponential models and solve problems
 LE.A
 CCSS.HSF- Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a
 LE.A. 3 quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

