Standard ID	Standard Text	Edgenuity Lesson Name
Mathematical Practices		
CCSS.Math.P ractice.MP1	Make sense of problems and persevere in solving them.	Rate of Change Multiplication of Polynomials Evaluating Logarithmic Expressions Modeling with Exponential and Logarithmic Equations
CCSS.Math.P ractice.MP2	Reason abstractly and quantitatively.	Rate of Change Statistical Inferences Hypothesis Testing
CCSS.Math.P ractice.MP3	Construct viable arguments and critique the reasoning of others.	The Unit Circle Evaluating the Six Trigonometric Functions
CCSS.Math.P ractice.MP4	Model with mathematics.	Modeling with Exponential and Logarithmic Equations Modeling with Periodic Functions Step Functions
CCSS.Math.P ractice.MP5	Use appropriate tools strategically.	Solving Polynomial Equations using Technology Solving Logarithmic Equations using Technology
CCSS.Math.P ractice.MP6	Attend to precision.	Graphing Radical Functions Graphing Exponential Functions Graphing Logarithmic Functions Modeling with Exponential and Logarithmic Equations Representing Data Graphing Sine and Cosine Modeling with Periodic Functions Step Functions
CCSS.Math.P ractice.MP7	Look for and make use of structure.	Completing the Square

Standard ID	Standard Text	Edgenuity Lesson Name

CCSS.Math.P Look for and express regularity in repeated reasoning. ractice.MP8

CCSS.Math.C The Complex Number System

ontent.HSN-
CN
CCSS.Math.C Perform arithmetic operations with complex numbers.
ontent.HSN-
CN.A
CCSS.Math.C Know there is a complex number i such that $\mathrm{i}^{\wedge} 2=-1$, and every complex number has the form $\mathrm{a}+\mathrm{bi}$ Complex Numbers ontent.HSN- with a and b real
CN.A. 1
CCSS.Math.C Use the relation $\mathrm{i}^{\wedge} 2=-1$ and the commutative, associative, and distributive properties to add,
Operations with Complex Numbers ontent.HSN- subtract, and multiply complex numbers.

CN.A. 2

CCSS.Math.C Use complex numbers in polynomial identities and equations.
ontent.HSN-
CN.C
CCSS.Math.C Solve quadratic equations with real coefficients that have complex solutions.
Completing the Square
ontent.HSN-
The Quadratic Formula
CN.C. 7
CCSS.Math.C (+) Extend polynomial identities to the complex numbers. For example, rewrite $x^{\wedge} 2+4$ as $(x+2 i)(x-\quad$ The Fundamental Theorem of Algebra ontent.HSN- 2i).
CN.C. 8
CCSS.Math.C (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
Completing the Square
ontent.HSN-
CN.C. 9
The Quadratic Formula
The Fundamental Theorem of Algebra Writing Polynomial Functions from Complex Roots

Algebra

CCSS.Math.C Seeing Structure in Expressions
ontent.HSA-
SSE
CCSS.Math.C Interpret the structure of expressions.
ontent.HSA-
SSE.A

Standard ID	Standard Text	Edgenuity Lesson Name

CCSS.Math.C Interpret expressions that represent a quantity in terms of its context.
ontent.HSA-
SSE.A. 1
CCSS.Math.C Interpret parts of an expression, such as terms, factors, and coefficients.
Factoring Polynomials Completely
ontent.HSA-
SSE.A.1.a
Multiplying and Dividing Rational Expressions
Adding and Subtracting Rational Expressions

CCSS.Math.C Interpret complicated expressions by viewing one or more of their parts as a single entity. For Factoring Polynomials Completely ontent.HSA- example, interpret $\mathrm{P}(1+\mathrm{r})^{\wedge} \mathrm{n}$ as the product of P and a factor not depending on P .
SSE.A.1.b
CCSS.Math.C Use the structure of an expression to identify ways to rewrite it. For example, see $x^{\wedge} 4-y^{\wedge} 4$ as $\left(x^{\wedge} 2\right)^{\wedge} 2$ omega standard ontent.HSA- $-\left(y^{\wedge} 2\right)^{\wedge} 2$, thus recognizing it as a difference of squares that can be factored as $\left(x^{\wedge} 2-y^{\wedge} 2\right)\left(x^{\wedge} 2+y^{\wedge} 2\right)$.
SSE.A. 2

CCSS.Math.C Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use Geometric Series ontent.HSA- the formula to solve problems. For example, calculate mortgage payments.
SSE.B. 4
CCSS.Math.C Arithmetic with Polynomials and Rational Functions
ontent.HSA-
APR
CCSS.Math.C Perform arithmetic operations on polynomials.
ontent.HSA-
APR.A
CCSS.Math.C Understand that polynomials form a system analogous to the integers, namely, they are closed under Addition and Subtraction of Polynomials ontent.HSA- the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. Multiplication of Polynomials APR.A. 1

Division of Polynomials

CCSS.Math.C Understand the relationship between zeros and factors of polynomials.
ontent.HSA-
APR.B
CCSS.Math.C Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on Synthetic Division and the Remainder Theorem ontent.HSA- division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
APR.B. 2

Writing Polynomial Functions from Complex Roots

\section*{| Standard ID | Standard Text | Edgenuity Lesson Name |
| :--- | :--- | :--- |}

CCSS.Math.C Identify zeros of polynomials when suitable factorizations are available, and use the zeros to The Rational Roots Theorem ontent.HSA- construct a rough graph of the function defined by the polynomial.
APR.B. 3
CCSS.Math.C Use polynomial identities to solve problems.
ontent.HSA-
APR.C
CCSS.Math.C Prove polynomial identities and use them to describe numerical relationships. For example, the
The Binomial Theorem
ontent.HSA- polynomial identity $\left(x^{\wedge} 2+y^{\wedge} 2\right)^{\wedge} 2=\left(x^{\wedge} 2-y^{\wedge} 2\right)^{\wedge} 2+(2 x y)^{\wedge} 2$ can be used to generate Pythagorean
APR.C. 4
triples.

CCSS.Math.C (+) Know and apply the Binomial Theorem for the expansion of $(x+y)^{\wedge} n$ in powers of x and y for a The Binomial Theorem ontent.HSA- positive integer n, where x and y are any numbers, with coefficients determined for example by APR.C. 5 Pascal's Triangle.

CCSS.Math.C Rewrite rational expressions.
ontent.HSA-
APR.D
CCSS.Math.C Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, Division of Polynomials ontent.HSA- where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, APR.D. 6 using inspection, long division, or, for the more complicated examples, a computer algebra system.

CCSS.Math.C (+) Understand that rational expressions form a system analogous to the rational numbers, closed ontent.HSA- under addition, subtraction, multiplication, and division by a nonzero rational expression; add, APR.D. 7 subtract, multiply, and divide rational expressions.

CCSS.Math.C Creating Equations

ontent.HSA-
CED
CCSS.Math.C Create equations that describe numbers or relationships.
ontent.HSA-
CED.A
CCSS.Math.C Create equations and inequalities in one variable and use them to solve problems. Include equations Rational Equations ontent.HSA- arising from linear and quadratic functions, and simple rational and exponential functions.
CED.A. 1

\section*{| Standard ID | Standard Text |
| :--- | :--- |}

CCSS.Math.C Create equations in two or more variables to represent relationships between quantities; graph ontent.HSA- equations on coordinate axes with labels and scales.
CED.A. 2
CCSS.Math.C Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, ontent.HSA- and interpret solutions as viable or nonviable options in a modeling context. For example, represent CED.A. 3 inequalities describing nutritional and cost constraints on combinations of different foods.

Edgenuity Lesson Name

Modeling with Periodic Functions

Rational Equations

CCSS.Math.C Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving ontent.HSA- equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.
CED.A. 4
CCSS.Math.C Reasoning with Equations and Inequalities
ontent.HSA-
REI
CCSS.Math.C Understand solving equations as a process of reasoning and explain the reasoning.
ontent.HSA-
REI.A
CCSS.Math.C Solve simple rational and radical equations in one variable, and give examples showing how ontent.HSA- extraneous solutions may arise.
REI.A. 2
omega standard
,

Rational Equations
Adding and Subtracting Radicals
Multiplying Radicals
Radical Equations and Extraneous Roots

CCSS.Math.C Represent and solve equations and inequalities graphically.
ontent.HSA-
REI.D
CCSS.Math.C Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ ontent.HSA- intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using REI.D. 11 technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

Solving One-Variable Equations with Systems Solving Polynomial Equations using Technology Rational Equations
Solving Logarithmic Equations using
Technology
Solving Exponential and Logarithmic Equations
Absolute Value Functions

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.C Interpreting Functions ontent.HSFIF		
CCSS.Math.C Interpret functions that arise in applications in terms of the context. ontent.HSF- IF.B		
CCSS.Math.C For a function that models a relationship between two quantities, interpret key features of graphs ontent.HSF- and tables in terms of the quantities, and sketch graphs showing key features given a verbal IF.B. 4 description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.		Completing the Square Square Root Functions Graphing Radical Functions Graphing Exponential Functions Graphing Logarithmic Functions Graphing Sine and Cosine Modeling with Periodic Functions Absolute Value Functions Step Functions
CCSS.Math.C Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it ontent.HSF- describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n IF.B. 5 engines in a factory, then the positive integers would be an appropriate domain for the function.		Relations and Functions Square Root Functions Graphing Radical Functions Graphing Exponential Functions Graphing Logarithmic Functions Graphing Sine and Cosine Modeling with Periodic Functions Absolute Value Functions Step Functions Comparing Characteristics of Functions
CCSS.Math.C Calculate and interpret the average rate of change of a function (presented symbolically or as a table) Rate of Change ontent.HSF- over a specified interval. Estimate the rate of change from a graph. IF.B. 6		
CCSS.Math.C Analyze functions using different representations. ontent.HSF- IF.C		
CCSS.Math.C ontent.HSFIF.C. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.C	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute	Square Root Functions
ontent.HSF-	value functions.	Graphing Radical Functions
IF.C.7.b	Absolute Value Functions	
	Step Functions	
CCSS.Math.C Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing	Graphing Polynomial Functions	
ontent.HSF- end behavior.	Graphing Exponential Functions	
IF.C.7.C	Graphing Logarithmic Functions	
CCSS.Math.C Graph exponential and logarithmic functions, showing intercepts and end behavior, and	Modeling with Exponential and Logarithmic	
ontent.HSF- trigonometric functions, showing period, midline, and amplitude.	Equations	
IF.C.7.e	Graphing Sine and Cosine	

CCSS.Math.C Write a function defined by an expression in different but equivalent forms to reveal and explain ontent.HSF- different properties of the function.
IF.C. 8
CCSS.Math.C Use the process of factoring and completing the square in a quadratic function to show zeros, ontent.HSF- extreme values, and symmetry of the graph, and interpret these in terms of a context.
IF.C.8.a
CCSS.Math.C Use the properties of exponents to interpret expressions for exponential functions. For example, Negative Exponents ontent.HSF- identify percent rate of change in functions such as $y=(1.02)^{\wedge} t, y=(0.97)^{\wedge} t, y=(1.01)^{\wedge} 12 t, y=$ IF.C.8.b $\quad(1.2)^{\wedge} t / 10$, and classify them as representing exponential growth or decay.

CCSS.Math.C Compare properties of two functions each represented in a different way (algebraically, graphically, Comparing Characteristics of Functions ontent.HSF- numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function IF.C. 9 and an algebraic expression for another, say which has the larger maximum.

CCSS.Math.C Building Functions

ontent.HSF-
BF
CCSS.Math.C Build a function that models a relationship between two quantities.
ontent.HSF-
BF.A
CCSS.Math.C Write a function that describes a relationship between two quantities.
ontent.HSF-
BF.A. 1

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.C	Combine standard function types using arithmetic operations. For example, build a function that	Function Operations
ontent.HSF-	models the temperature of a cooling body by adding a constant function to a decaying exponential,	
BF.A.1.b	and relate these functions to the model.	

CCSS.Math.C Build new functions from existing functions.

ontent.HSF-
BF.B
CCSS.Math.C Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values
ontent.HSF- of k (both positive and negative); find the value of k given the graphs. Experiment with cases and
BF.B. 3 illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Symmetry
Transformations of Quadratic Functions
Square Root Functions
Graphing Radical Functions
Graphing Exponential Functions
Graphing Logarithmic Functions
Graphing Sine and Cosine
Absolute Value Functions

CCSS.Math.C Find inverse functions.
ontent.HSF-
BF.B. 4
CCSS.Math.C Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an ontent.HSF- expression for the inverse. For example, $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{\wedge} 3$ for $\mathrm{x}>0$ or $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1) /(\mathrm{x}-1)$ for $\mathrm{x} \neq 1$. BF.B.4.a

CCSS.Math.C Linear, Quadratic, and Exponential Models
ontent.HSF-
LE
CCSS.Math.C Construct and compare linear and exponential models and solve problems.
ontent.HSF-
LE.A

Standard ID	Standard Text
CCSS.Math.C For exponential models, express as a logarithm the solution to ab^ct = d where a, c, and d are	
ontent.HSF- numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.	

Edgenuity Lesson Name

Evaluating Logarithmic Expressions Solving Logarithmic Equations using Technology
Solving Equations using Properties of Logarithms
Solving Exponential and Logarithmic Equations
Modeling with Exponential and Logarithmic
Equations

CCSS.Math.C Trigonometric Functions

ontent.HSF-
TF
CCSS.Math.C Extend the domain of trigonometric functions using the unit circle.
ontent.HSF-
TF.A
CCSS.Math.C Understand radian measure of an angle as the length of the arc on the unit circle subtended by the Radian Measure ontent.HSF- angle.
TF.A. 1
CCSS.Math.C Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions The Unit Circle
ontent.HSF- to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the Evaluating the Six Trigonometric Functions TF.A. 2 unit circle.

CCSS.Math.C Model periodic phenomena with trigonometric functions.
ontent.HSF-
TF.B
CCSS.Math.C Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, Graphing Sine and Cosine
ontent.HSF- and midline.
Modeling with Periodic Functions
TF.B. 5
CCSS.Math.C Prove and apply trigonometric identities.
ontent.HSF-
TF.C
CCSS.Math.C Prove the Pythagorean identity $\sin ^{\wedge} 2(\theta)+\cos ^{\wedge} 2(\theta)=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given Evaluating the Six Trigonometric Functions ontent.HSF- $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ and the quadrant of the angle.
TF.C. 8
Statistics and Probability

Standard ID	Standard Text	Edgenuity Lesson Name
CCSS.Math.C Interpreting Categorical and Quantitative Data		
ontent.HSS-		
ID		
CCSS.Math.C Summarize, represent, and interpret data on a single count or measurement variable		
ontent.HSS-		
ID.A		
CCSS.Math.C Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate \quad Standard Deviation		
ontent.HSS- population percentages. Recognize that there are data sets for which such a procedure is not		
ID.A. $4 \quad$ appropriate. Use calculators, spreadsheets and tables to estimate areas under the normal curve.		

CCSS.Math.C Making Inferences and Justifying Conclusions

ontent.HSS-
IC
CCSS.Math.C Understand and evaluate random processes underlying statistical experiments
ontent.HSS-
IC.A
CCSS.Math.C Understand that statistics is a process for making inferences about population parameters based on a
Designing a Study
ontent.HSS- random sample from that population.
Representing Data
IC.A. 1
CCSS.Math.C Decide if a specified model is consistent with results from a given data-generating process, e.g. using Statistical Inferences
ontent.HSS- simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a
IC.A. 2 result of 5 tails in a row cause you to question the model?

CCSS.Math.C Make inferences and justify conclusions from sample surveys, experiments and observational studies ontent.HSS-

IC.B
CCSS.Math.C Recognize the purposes of and differences among sample surveys, experiments and observational Designing a Study ontent.HSS- studies; explain how randomization relates to each.
IC.B. 3
CCSS.Math.C Use data from a sample survey to estimate a population mean or proportion; develop a margin of Standard Deviation ontent.HSS- error through the use of simulation models for random sampling.
IC.B. 4
CCSS.Math.C Use data from a randomized experiment to compare two treatments; use simulations to decide if Hypothesis Testing ontent.HSS- differences between parameters are significant.
IC.B. 5
CCSS.Math.C Evaluate reports based on data. Representing Data
ontent.HSS-
IC.B. 6

Standard ID Standard Text
Edgenuity Lesson Name
CCSS.Math.C Using Probability to Make Decisions
ontent.HSS-
MD
CCSS.Math.C Use probability to evaluate outcomes of decisions
ontent.HSS-
MD.B

CCSS.Math.C (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). Expected Value
ontent.HSS-
MD.B. 6

CCSS.Math.C (+) Analyze decisions and strategies using probability concepts (e.g. product testing, medical testing, ontent.HSS- pulling a hockey goalie at the end of a game)

Expected Value
MD.B. 7

