Standard ID	Standard Text	Edgenuity Lesson Name
	Practice Standards	
MP. 1	Make sense of problems and persevere in solving them.	
		Quantitative Reasoning
		Dimensional Analysis
		Writing and Solving Equations in Two Variables
		Writing and Graphing Equations in
		Two Variables
		Function Notation
		Evaluating Functions
		Analyzing Graphs
		Point-Slope Form of a Line
		Writing Linear Equations
		Solving Mixture Problems
		Solving Absolute Value Equations
		Solving Systems: Introduction to
		Linear Combinations
		Solving Systems of Linear
		Equations: Linear Combinations
		Graphing Two-Variable Linear
		Inequalities
		Reflections and Dilations of
		Absolute Value Functions
		Exponential Functions with Radical
		Bases
		Introduction to the Quadratic
		Formula
		Describing Data
		Two-Way Tables
		Relative Frequencies and
		Association
		Box Plots
		Analyzing Residuals
		Strength of Correlation

Standard ID	Standard Text	Edgenuity Lesson Name
MP.2		
	Reason abstractly and quantitatively.	Quantitative Reasoning
	Dimensional Analysis	
	Writing and Solving Equations in	
	Two Variables	
	Writing and Graphing Equations in	
	Two Variables	
	Introduction to Functions	
	Function Notation	
	Evaluating Functions	
	Analyzing Graphs	
	Introduction to Linear Functions	
	Solving Linear Equations: Variable	
	on One Side	
	Solving Linear Equations: Variables	
	on Both Sides	
	Solving Mixture Problems	
	Literal Equations	
	Solving One-Variable Inequalities	
	Solving Systems of Linear	
	Equations: Substitution	
	Step Functions	
	Absolute Value Functions and	
	Translations	
	Exponential Growth Functions	
	Exponential Decay Functions	
	Introduction to Quadratic	
	Functions	
	Quadratic Functions: Standard	
	Form	
	Quadratic Functions: Factored	
	Form	

Standard ID	Standard Text	Edgenuity Lesson Name
MP. 3	Construct viable arguments and critique the reasoning of others.	
		Slope of a Line
		Writing Linear Equations
		Special Linear Relationships
		Solving Linear Equations: Variables on Both Sides
		Solving Linear Equations:
		Distributive Property
		Reflections of Exponential
		Functions
		Introduction to Polynomials
		Solving Quadratic Equations:
		Factoring
		Solving Quadratic Equations:
		Square Root Property
		Solving Quadratic Equations:
		Completing the Square
		Solving Quadratic Equations:
		Completing the Square
		(Continued)
		Modeling with Quadratic
		Equations
		Regression Models
MP. 4	Model with mathematics.	
		Writing and Solving Equations in
		Two Variables
		Writing and Graphing Equations in
		Two Variables
		Function Notation
		Writing Linear Equations
		Solving Linear Equations: Variable on One Side
		Solving Mixture Problems
		Solving One-Variable Inequalities
		Introduction to Compound
		Inequalities
		Solving Systems: Introduction to
		Linear Combinations
© Edgenuity Inc.	Confidential	Page 3

Standard ID	Standard Text		Edgenuity Lesson Name
MP. 4	Model with mathematics.		
	(Cont'd)		Solving Systems of Linear
			Equations: Linear Combinations
			Modeling with Systems of Linear
			Inequalities
			Exponential Growth Functions
			Exponential Decay Functions
			Modeling with Quadratic Functions
			Measures of Center
			Line of Best Fit
			Regression Models
MP. 5	Use appropriate tools strategically.		
			Dimensional Analysis
			Slope-Intercept Form of a Line
			Point-Slope Form of a Line
			Writing Linear Equations
			Solving Systems of Linear
			Equations: Graphing
			Factoring Trinomials: $\mathrm{a}=1$
			Factoring Trinomials: $\mathrm{a}>1$
			Factoring Polynomials: Difference
			of Squares
			Quadratic Functions: Factored
			Form
MP. 6	Attend to precision.		
			Dimensional Analysis
MP. 7	Look for and make use of structure.		
			Evaluating Functions
			Recognizing Patterns
			Solving Systems of Linear
			Inequalities
			Linear Piecewise Defined Functions
			Absolute Value Functions and
			Translations
			Reflections and Dilations of
			Absolute Value Functions
			The Square Root Function
© Edgenuity Inc.		Confidential	Page 4

Standard ID	Standard Text	Edgenuity Lesson Name
MP. 7	Look for and make use of structure.	
	(Cont'd)	The Cube Root Function
	Vertical Stretches and Shrinks of	
	Exponential Functions	
	Translations of Exponential	
	Functions	
	Geometric Sequences	
	Adding and Subtracting	
	Polynomials	
	Multiplying Monomials and	
	Binomials	
	Multiplying Polynomials and	
	Simplifying Expressions	
	Factoring Polynomials: GCF	
	Factoring Polynomials: Double	
	Grouping	
	Factoring Trinomials: $a=1$	
	Factoring Trinomials: $a=1$	
	(Continued)	
	Factoring Trinomials: a > 1	
	Factoring Polynomials: Difference	
of Squares		
	Factoring Polynomials: Sum and	
	Difference of Cubes	
	Factoring Polynomials Completely	
	Quadratic Functions: Vertex Form	
	Completing the Square	
	Completing the Square	

Standard ID	Standard Text	Edgenuity Lesson Name
MP. 7	Look for and make use of structure. (Cont'd)	Solving Quadratic Equations: Quadratic Formula Solving Linear-Quadratic Systems Standard Deviation
MP. 8	Look for and express regularity in repeated reasoning.	Recognizing Patterns Introduction to Linear Functions Solving Absolute Value Equations
N-RN	The Real Number System Extend the properties of exponents to rational exponents.	
N-RN. 1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.	Exponential Functions with Radical Bases
N-RN. 2	Rewrite expressions involving radicals and rational exponents using the properties of exponents.	Exponential Functions with Radical Bases The Cube Root Function
	Use properties of rational and irrational numbers.	
N-RN. 3	Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	Solving Quadratic Equations: Completing the Square
N-Q	Quantities Reason quantitatively and use units to solve problems.	
N-Q. 1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	
		Dimensional Analysis Line of Best Fit Quantitative Reasoning Writing and Graphing Equations in Two Variables

Standard ID	Standard Text	Edgenuity Lesson Name
N-Q. 2	Define appropriate quantities for the purpose of descriptive modeling.	
		Dimensional Analysis
		Quantitative Reasoning
N-Q. 3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	
		Dimensional Analysis
A-SSE	Seeing Structure in Expressions	
	Interpret the structure of expressions	
A-SSE. 1	Interpret expressions that represent a quantity in terms of its context.	
A-SSE.1.a	Interpret parts of an expression, such as terms, factors, and coefficients.	
		Introduction to Polynomials
		Multiplying Polynomials and Simplifying Expressions
A-SSE.1.b	Interpret complicated expressions by viewing one or more of their parts as a single entity.	
		Factoring Polynomials: GCF
A-SSE. 2	Use the structure of an expression to identify ways to rewrite it.	
		Factoring Polynomials Completely
		Factoring Polynomials: Difference of Squares
		Factoring Polynomials: Double
		Grouping
		Factoring Polynomials: GCF
		Factoring Polynomials: Sum and
		Difference of Cubes
		Factoring Trinomials: $\mathrm{a}=1$
		Factoring Trinomials: a = 1
		Factoring Trinomials: a > 1
		Introduction to Polynomials
	Write expressions in equivalent forms to solve problems	
A-SSE 3	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	
A-SSE.3.a	Factor a quadratic expression to reveal the zeros of the function it defines.	
		Quadratic Functions: Standard Form

Standard ID	Standard Text	Edgenuity Lesson Name
A-SSE.3.b	Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.	
		Completing the Square Completing the Square (Continued)
A-SSE.3.c	Use the properties of exponents to transform expressions for exponential functions.	
		Exponential Decay Functions Exponential Functions with Radical Bases
A-APR	Arithmetic with Polynomials and Rational Expressions Perform arithmetic operations on polynomials	
A-APR. 1	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	Adding and Subtracting Polynomials Multiplying Monomials and Binomials Multiplying Polynomials and Simplifying Expressions
A-CED	Creating Equations Create equations that describe numbers or relationships	
A-CED. 1	Create equations and inequalities in one variable and use them to solve problems.	Introduction to Compound Inequalities Solving Absolute Value Equations Solving Linear Equations: Distributive Property Solving Linear Equations: Variable on One Side Solving Linear Equations: Variables on Both Sides Solving Mixture Problems Solving One-Variable Inequalities Solving Rate Problems

Standard ID	Standard Text	Edgenuity Lesson Name
A-CED. 2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	
		Writing and Graphing Equations in Two Variables Writing and Solving Equations in Two Variables
A-Ced. 3	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	
		Introduction to Compound Inequalities
		Modeling with Systems of Linear Equations
		Modeling with Systems of Linear Inequalities
		Modeling with Two-Variable Linear Inequalities
		Regression Models
		Solving Absolute Value Equations
		Solving Linear Equations: Distributive Property Solving Mixture Problems
		Solving Rate Problems
		Solving Systems of Linear
		Equations: Linear Combinations
		Solving Systems of Linear
		Equations: Substitution
		Solving Systems: Introduction to
		Linear Combinations
		Writing and Solving Equations in
		Two Variables
A-CED. 4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	
		Literal Equations

Standard ID	Standard Text	Edgenuity Lesson Name
A-REI	Reasoning with Equations and Inequalities Understand solving equations as a process of reasoning and explain the reasoning	
A-REI. 1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	Literal Equations Solving Linear Equations: Variable on One Side Solving Linear Equations: Variables on Both Sides
	Solve equations and inequalities in one variable	
A-REI. 3	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	Literal Equations Solving Absolute Value Equations Solving Linear Equations: Distributive Property Solving Linear Equations: Variable on One Side Solving Linear Equations: Variables on Both Sides Solving Mixture Problems Solving One-Variable Inequalities Solving Rate Problems
A-REI. 4	Solve quadratic equations in one variable.	
A-REI.4.a	Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x $p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.	Introduction to the Quadratic Formula Solving Quadratic Equations: Completing the Square Solving Quadratic Equations: Completing the Square (Continued)

Standard ID	Standard Text	Edgenuity Lesson Name
A-REI.4.b	Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $\mathrm{a} \pm \mathrm{bi}$ for real numbers a and b .	Introduction to the Quadratic Formula Modeling with Quadratic Equations Solving Quadratic Equations: Completing the Square Solving Quadratic Equations: Completing the Square (Continued) Solving Quadratic Equations: Factoring Solving Quadratic Equations: Quadratic Formula Solving Quadratic Equations: Square Root Property Solving Quadratic Equations: Zero Product Property
	Solve systems of equations	
A-REI. 5	Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	Solving Systems: Introduction to Linear Combinations
A-REI. 6	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	Solving Systems of Linear Equations: Graphing Solving Systems of Linear Equations: Linear Combinations Solving Systems of Linear Equations: Substitution Solving Systems: Introduction to Linear Combinations
A-REI. 7	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.	

Standard ID	Standard Text	Edgenuity Lesson Name
	Represent and solve equations and inequalities graphically	
A-REI. 10	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	
		Writing and Graphing Equations in Two Variables
A-REI. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	
		Solving Linear Equations: Variable on One Side Solving Linear Equations: Variables on Both Sides Solving Linear-Quadratic Systems
A-REI. 12	Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	
		Graphing Two-Variable Linear
		Inequalities Modeling with Systems of Linear Inequalities
		Modeling with Two-Variable Linear
		Inequalities Solving Systems of Linear Inequalities
F-IF	Interpreting Functions Understand the concept of a function and use function notation	
F-IF. 1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	
		Analyzing Graphs
		Analyzing Tables
		Introduction to Functions
		Introduction to Linear Functions

Standard ID	Standard Text	Edgenuity Lesson Name
F-IF. 1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element (Cont'd)	Slope-Intercept Form of a Line Writing Linear Equations
F-IF. 2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	Absolute Value Functions and Translations Evaluating Functions Function Notation Line of Best Fit Linear Piecewise Defined Functions Recognizing Patterns Reflections and Dilations of Absolute Value Functions Regression Models Step Functions The Cube Root Function The Square Root Function
F-IF. 3	Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.	Geometric Sequences Recognizing Patterns Special Linear Relationships
	Interpret functions that arise in applications in terms of the context	
F-IF. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.	
		Analyzing Graphs Analyzing Tables Completing the Square Completing the Square (Continued) Introduction to Quadratic Functions Modeling with Quadratic Functions

Standard ID	Standard Text	Edgenuity Lesson Name
F-IF. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms (Cont'd)	Quadratic Functions: Factored Form Quadratic Functions: Vertex Form Special Linear Relationships
F-IF. 5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	Absolute Value Functions and Translations Analyzing Graphs Introduction to Linear Functions Linear Piecewise Defined Functions Point-Slope Form of a Line Reflections and Dilations of Absolute Value Functions Slope-Intercept Form of a Line Special Linear Relationships Step Functions The Cube Root Function The Square Root Function Writing Linear Equations
F-IF. 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	Introduction to Linear Functions Performance Task: Super Survey Simulator Point-Slope Form of a Line Slope of a Line Slope-Intercept Form of a Line Writing Linear Equations

Standard ID	Standard Text	Edgenuity Lesson Name
	Analyze functions using different representations	
F-IF. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	
F-IF.7.a	Graph linear and quadratic functions and show intercepts, maxima, and minima.	
		Completing the Square
		Completing the Square
		(Continued)
		Introduction to Quadratic
		Functions
		Modeling with Quadratic Functions
		Point-Slope Form of a Line
		Quadratic Functions: Factored
		Form
		Quadratic Functions: Standard
		Form
		Quadratic Functions: Vertex Form
		Slope-Intercept Form of a Line
F-IF.7.b	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	
		Absolute Value Functions and
		Translations
		Linear Piecewise Defined Functions
		Performance Task: Construct and
		Analyze Piecewise Functions
		Reflections and Dilations of
		Absolute Value Functions
		Step Functions
		The Square Root Function
F-IF.7.e	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	
		Exponential Decay Functions
		Exponential Growth Functions
		Reflections of Exponential
		Functions
		Translations of Exponential
		Functions
		Vertical Stretches and Shrinks of
		Exponential Functions

Standard ID	Standard Text	Edgenuity Lesson Name
F-IF. 8	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	
F-IF.8.a	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	Completing the Square Completing the Square (Continued) Modeling with Quadratic Functions
F-IF.8.b	Use the properties of exponents to interpret expressions for exponential functions.	Reflections of Exponential Functions
F-IF. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	Introduction to Linear Functions Quadratic Functions: Factored Form
F-BF F-BF. 1	Building Functions Build a function that models a relationship between two quantities Write a function that describes a relationship between two quantities.	
F-BF.1.a	Determine an explicit expression, a recursive process, or steps for calculation from a context.	Geometric Sequences Recognizing Patterns Special Linear Relationships
F-BF.1.b	Combine standard function types using arithmetic operations.	Translations of Exponential Functions
F-BF. 2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	Geometric Sequences Special Linear Relationships

Standard ID	Standard Text	enuity Lesson Nam
	Build new functions from existing functions	
F-BF. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.	Absolute Value Functions and Translations Quadratic Functions: Vertex Form Reflections and Dilations of Absolute Value Functions Reflections of Exponential Functions The Cube Root Function The Square Root Function Translations of Exponential Functions Vertical Stretches and Shrinks of Exponential Functions
F-BF. 4	Find inverse functions.	
F-BF.4.a	Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse.	Evaluating Functions
F-LE F-LE. 1	Linear, Quadratic, and Exponential Models Construct and compare linear, quadratic, and exponential models and solve problems Distinguish between situations that can be modeled with linear functions and with exponential functions.	
F-LE.1.a	Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	Exponential Growth Functions Introduction to Linear Functions
F-LE.1.b	Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	Introduction to Linear Functions Point-Slope Form of a Line Slope of a Line Slope-Intercept Form of a Line Writing Linear Equations

Standard ID	Standard Text	Edgenuity Lesson Name
F-LE.1.c	Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	
		Exponential Decay Functions
		Exponential Growth Functions
F-LE. 2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	
		Geometric Sequences
		Special Linear Relationships
F-LE. 3	Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	
		Exponential Growth Functions
	Interpret expressions for functions in terms of the situation they model	
F-LE. 5	Interpret the parameters in a linear or exponential function in terms of a context.	
		Exponential Decay Functions
		Exponential Growth Functions
		Reflections of Exponential
		Functions
		Translations of Exponential
		Functions
		Vertical Stretches and Shrinks of
		Exponential Functions
S-ID	Interpreting Categorical and Quantitative Data	
	Summarize, represent, and interpret data on a single count or measurement variable	
S-ID. 1	Represent data with plots on the real number line (dot plots, histograms, and box plots).	
		Box Plots
		Measures of Center
S-ID. 2	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	
		Box Plots
		Measures of Center
		Standard Deviation

Standard ID	Standard Text	Edgenuity Lesson Name
S-ID. 3	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	
		Box Plots
		Describing Data
		Measures of Center
		Standard Deviation
	Summarize, represent, and interpret data on two categorical and quantitative variables	
S-ID. 5	Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	
		Relative Frequencies and Association Two-Way Tables
S-ID. 6	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	
S-ID.6.a	Fit a function to the data; use functions fitted to data to solve problems in the context of the data.	
		Analyzing Residuals
		Line of Best Fit
S-ID.6.b	Informally assess the fit of a function by plotting and analyzing residuals.	
		Analyzing Residuals
S-ID.6.C	Fit a linear function for a scatter plot that suggests a linear association.	
		Analyzing Residuals
		Line of Best Fit
		Regression Models
		Strength of Correlation
	Interpret linear models	
S-ID. 7	Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	
		Line of Best Fit
		Regression Models
S-ID. 8	Compute (using technology) and interpret the correlation coefficient of a linear fit.	
		Strength of Correlation
S-ID. 9	Distinguish between correlation and causation.	
		Strength of Correlation

