
Identifier Standard Clarification Best Aligned Resource Resource #2 Resource #3

2-CS-01 Recommend

improvements to

the design of

computing

devices, based on

an analysis of

how users

interact with the

devices.

The study of human–computer interaction (HCI) can improve the design of devices, including both hardware and software.

Students should make recommendations for existing devices (e.g., a laptop, phone, or tablet) or design their own

components or interface (e.g., create their own controllers). Teachers can guide students to consider usability through

several lenses, including accessibility, ergonomics, and learnability. For example, assistive devices provide capabilities

such as scanning written information and converting it to speech.

Semester A, Unit 3, Lesson 5: Designing

Devices

Semester A, Unit 3, Lesson 4: Evaluating

Devices

2-CS-02 Design projects

that combine

hardware and

software

components to

collect and

exchange data.

Collecting and exchanging data involves input, output, storage, and processing. When possible, students should select the

hardware and software components for their project designs by considering factors such as functionality, cost, size, speed,

accessibility, and aesthetics. For example, components for a mobile app could include accelerometer, GPS, and speech

recognition. The choice of a device that connects wirelessly through a Bluetooth connection versus a physical USB

connection involves a tradeoff between mobility and the need for an additional power source for the wireless device.

Semester A, Unit 3, Project: Design a Probe Semester A, Unit 3, Lesson 5: Designing

Devices

2-CS-03 Systematically

identify and fix

problems with

computing

devices and their

components.

Since a computing device may interact with interconnected devices within a system, problems may not be due to the

specific computing device itself but to devices connected to it. Just as pilots use checklists to troubleshoot problems with

aircraft systems, students should use a similar, structured process to troubleshoot problems with computing systems and

ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a

troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings,

and swapping in working components.

Semester A, Unit 4 Troubleshooting, Project:

Be a Troubleshooter

Semester A, Unit 4 Troubleshooting, Lesson

1: Basic Troubleshooting

Semester A, Unit 4 Troubleshooting, Lesson

3:What Is Wrong with Your Printer?

2-NI-04 Model the role of

protocols in

transmitting data

across networks

and the Internet.

Protocols are rules that define how messages between computers are sent. They determine how quickly and securely

information is transmitted across networks and the Internet, as well as how to handle errors in transmission. Students

should model how data is sent using protocols to choose the fastest path, to deal with missing information, and to deliver

sensitive data securely. For example, students could devise a plan for resending lost information or for interpreting a picture

that has missing pieces. The priority at this grade level is understanding the purpose of protocols and how they enable

secure and errorless communication. Knowledge of the details of how specific protocols work is not expected.

Semester A, Unit 5 Networks and the

Internet, Lesson 2: What Is a Protocol?

2-NI-05 Explain how

physical and

digital security

measures protect

electronic

information.

Information that is stored online is vulnerable to unwanted access. Examples of physical security measures to protect data

include keeping passwords hidden, locking doors, making backup copies on external storage devices, and erasing a

storage device before it is reused. Examples of digital security measures include secure router admin passwords, firewalls

that limit access to private networks, and the use of a protocol such as HTTPS to ensure secure data transmission.

Semester A, Unit 6 Cybersecurity , Lesson 3:

How Do You Protect Your Devices?

Semester A, Unit 6 Cybersecurity , Lesson 1:

Protect Your Personal Information

2-NI-06 Apply multiple

methods of

encryption to

model the secure

transmission of

information.

Encryption can be as simple as letter substitution or as complicated as modern methods used to secure networks and the

Internet. Students should encode and decode messages using a variety of encryption methods, and they should

understand the different levels of complexity used to hide or secure information. For example, students could secure

messages using methods such as Caesar cyphers or steganography (i.e., hiding messages inside a picture or other data).

They can also model more complicated methods, such as public key encryption, through unplugged activities.

Semester A, Unit 6 Cybersecurity , Lesson 3:

How Do You Protect Your Devices?

2-DA-07 Represent data

using multiple

encoding

schemes.

Data representations occur at multiple levels of abstraction, from the physical storage of bits to the arrangement of

information into organized formats (e.g., tables). Students should represent the same data in multiple ways. For example,

students could represent the same color using binary, RGB values, hex codes (low-level representations), as well as forms

understandable by people, including words, symbols, and digital displays of the color (high-level representations).

Semester A, Unit 2 Hardware & Software ,

Lesson 1: Learning How Computers Talk

2-DA-08 Collect data using

computational

tools and

transform the

data to make it

more useful and

reliable.

As students continue to build on their ability to organize and present data visually to support a claim, they will need to

understand when and how to transform data for this purpose. Students should transform data to remove errors, highlight or

expose relationships, and/or make it easier for computers to process. The cleaning of data is an important transformation

for ensuring consistent format and reducing noise and errors (e.g., removing irrelevant responses in a survey). An example

of a transformation that highlights a relationship is representing males and females as percentages of a whole instead of as

individual counts.

Semester B, Unit 1 Data & Analysis , Project:

Your Data Presentation

Semester B, Unit 1 Data & Analysis , Lesson

3: Organizing Your Data

2-DA-09 Refine

computational

models based on

the data they

have generated.

A model may be a programmed simulation of events or a representation of how various data is related. In order to refine a

model, students need to consider which data points are relevant, how data points relate to each other, and if the data is

accurate. For example, students may make a prediction about how far a ball will travel based on a table of data related to

the height and angle of a track. The students could then test and refine their model by comparing predicted versus actual

results and considering whether other factors are relevant (e.g., size and mass of the ball). Additionally, students could

refine game mechanics based on test outcomes in order to make the game more balanced or fair.

Semester B, Unit 4 Program Design , Lesson

3: Models and Simulations

2-AP-10 Use flowcharts

and/or

pseudocode to

address complex

problems as

algorithms.

Complex problems are problems that would be difficult for students to solve computationally. Students should use

pseudocode and/or flowcharts to organize and sequence an algorithm that addresses a complex problem, even though they

may not actually program the solutions. For example, students might express an algorithm that produces a

recommendation for purchasing sneakers based on inputs such as size, colors, brand, comfort, and cost. Testing the

algorithm with a wide range of inputs and users allows students to refine their recommendation algorithm and to identify

other inputs they may have initially excluded.

Semester B, Unit 2 Algorithms and

Programming, Lesson 1: Planning Your

Program

Semester B, Unit 2 Algorithms and

Programming, Project: Block Programming

2-AP-11 Create clearly

named variables

that represent

different data

types and

perform

operations on

their values.

A variable is like a container with a name, in which the contents may change, but the name (identifier) does not. When

planning and developing programs, students should decide when and how to declare and name new variables. Students

should use naming conventions to improve program readability. Examples of operations include adding points to the score,

combining user input with words to make a sentence, changing the size of a picture, or adding a name to a list of people.

Semester B, Unit 2 Algorithms and

Programming, Lesson 3: Variables and

Decisions

Semester B, Unit 2 Algorithms and

Programming, Project: Block Programming

2-AP-12 Design and

iteratively

develop

programs that

combine control

structures,

including nested

loops and

compound

conditionals.

Control structures can be combined in many ways. Nested loops are loops placed within loops. Compound conditionals

combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT), and nesting conditionals within

one another allows the result of one conditional to lead to another. For example, when programming an interactive story,

students could use a compound conditional within a loop to unlock a door only if a character has a key AND is touching the

door.

Semester B, Unit 2 Algorithms and

Programming, Project: Block Programming

Semester B, Unit 2 Algorithms and

Programming, Lesson 4: Nested Decisions

Semester B, Unit 2 Algorithms and

Programming, Lesson 5: Loops that Solve

Problems

2-AP-13 Decompose

problems and

subproblems into

parts to facilitate

the design,

implementation,

and review of

programs.

Students should break down problems into subproblems, which can be further broken down to smaller parts.

Decomposition facilitates aspects of program development by allowing students to focus on one piece at a time (e.g.,

getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables

different students to work on different parts at the same time. For example, animations can be decomposed into multiple

scenes, which can be developed independently.

Semester B, Unit 2 Algorithms and

Programming , Lesson 1: Planning Your

Program

2-AP-14 Create

procedures with

parameters to

organize code

and make it easier

to reuse.

Students should create procedures and/or functions that are used multiple times within a program to repeat groups of

instructions. These procedures can be generalized by defining parameters that create different outputs for a wide range of

inputs. For example, a procedure to draw a circle involves many instructions, but all of them can be invoked with one

instruction, such as “drawCircle.” By adding a radius parameter, the user can easily draw circles of different sizes.

Semester B, Unit 4 Program Design , Lesson

2: Functions with Parameters

Semester B, Unit 4 Program Design , Lesson

1: Functions

2-AP-15 Seek and

incorporate

feedback from

team members

and users to

refine a solution

that meets user

needs.

Development teams that employ user-centered design create solutions (e.g., programs and devices) that can have a large

societal impact, such as an app that allows people with speech difficulties to translate hard-to-understand pronunciation

into understandable language. Students should begin to seek diverse perspectives throughout the design process to

improve their computational artifacts. Considerations of the end-user may include usability, accessibility, age-appropriate

content, respectful language, user perspective, pronoun use, color contrast, and ease of use.

Semester B, Unit 4 Program Design , Unit

Project: Design for a Client

Semester B, Unit 4 Program Design , Lesson

2: Designing for Accessibility

2-AP-16 Incorporate

existing code,

media, and

libraries into

original

programs, and

give attribution.

Building on the work of others enables students to produce more interesting and powerful creations. Students should use

portions of code, algorithms, and/or digital media in their own programs and websites. At this level, they may also import

libraries and connect to web application program interfaces (APIs). For example, when creating a side-scrolling game,

students may incorporate portions of code that create a realistic jump movement from another person's game, and they

may also import Creative Commons-licensed images to use in the background. Students should give attribution to the

original creators to acknowledge their contributions.

Semester B, Unit 5 Cultural Impact of

Computing, Lesson 4: Giving Credit Where

Due

2-AP-17 Systematically

test and refine

programs using a

range of test

cases.

Use cases and test cases are created and analyzed to better meet the needs of users and to evaluate whether programs

function as intended. At this level, testing should become a deliberate process that is more iterative, systematic, and

proactive than at lower levels. Students should begin to test programs by considering potential errors, such as what will

happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers).

Semester B, Unit 3 COMPUTATIONAL

THINKING AND PROBLEM SOLVING, Unit

Project

Standard

2-AP-18 Distribute tasks

and maintain a

project timeline

when

collaboratively

developing

computational

artifacts.

Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on

the interdependent parts of a project together. Students should assume pre-defined roles within their teams and manage

the project workflow using structured timelines. With teacher guidance, they will begin to create collective goals,

expectations, and equitable workloads. For example, students may divide the design stage of a game into planning the

storyboard, flowchart, and different parts of the game mechanics. They can then distribute tasks and roles among

members of the team and assign deadlines.

Semester B, Unit 3 COMPUTATIONAL

THINKING AND PROBLEM SOLVING, Unit

Project

2-AP-19 Document

programs in order

to make them

easier to follow,

test, and debug.

Documentation allows creators and others to more easily use and understand a program. Students should provide

documentation for end users that explains their artifacts and how they function. For example, students could provide a

project overview and clear user instructions. They should also incorporate comments in their product and communicate

their process using design documents, flowcharts, and presentations.

Semester B, Unit 2 Algorithms and

Programming, Project: Block Programming

Semester B, Unit 4 Program Design , Lesson

5: Documentation

2-IC-20 Compare

tradeoffs

associated with

computing

technologies that

affect people's

everyday

activities and

career options.

Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use

computing technologies have tradeoffs. Students should consider current events related to broad ideas, including privacy,

communication, and automation. For example, driverless cars can increase convenience and reduce accidents, but they

are also susceptible to hacking. The emerging industry will reduce the number of taxi and shared-ride drivers, but will

create more software engineering and cybersecurity jobs.

Semester B, Unit 5 Cultural Impact of

Computing, Unit Project

2-IC-21 Discuss issues of

bias and

accessibility in

the design of

existing

technologies.

Students should test and discuss the usability of various technology tools (e.g., apps, games, and devices) with the

teacher's guidance. For example, facial recognition software that works better for lighter skin tones was likely developed

with a homogeneous testing group and could be improved by sampling a more diverse population. When discussing

accessibility, students may notice that allowing a user to change font sizes and colors will not only make an interface usable

for people with low vision but also benefits users in various situations, such as in bright daylight or a dark room.

Semester B, Unit 5 Cultural Impact of

Computing, Lesson 2: Bias and Accessibility

2-IC-22 Collaborate with

many

contributors

through

strategies such

as crowdsourcing

or surveys when

creating a

computational

artifact.

Crowdsourcing is gathering services, ideas, or content from a large group of people, especially from the online community.

It can be done at the local level (e.g., classroom or school) or global level (e.g., age-appropriate online communities, like

Scratch and Minecraft). For example, a group of students could combine animations to create a digital community mosaic.

They could also solicit feedback from many people though use of online communities and electronic surveys.

Semester B, Unit 5 Cultural Impact of

Computing, Lesson 5: Global

Communication, Power, and Access

2-IC-23 Describe

tradeoffs between

allowing

information to be

public and

keeping

information

private and

secure.

Sharing information online can help establish, maintain, and strengthen connections between people. For example, it allows

artists and designers to display their talents and reach a broad audience. However, security attacks often start with

personal information that is publicly available online. Social engineering is based on tricking people into revealing sensitive

information and can be thwarted by being wary of attacks, such as phishing and spoofing.

Semester A, Unit 6 Cybersecurity , Lesson 2:

Outsmarting Hackers

